●講座

図学と折り紙(6)

Graphic Science and Origami (6)

三谷 純 Jun MITANI

1. はじめに

本講座のタイトルは「図学と折り紙」であることか ら, これまでは折り紙の図的, 幾何学的な内容を主に取 り扱ってきました。しかし、折り紙の研究には、その文 化歴史の研究から、教育での活用、そして産業応用ま で、幅広い対象があります. 最終回となる今回は、この 折り紙の研究について、国内外では現在どのようなもの が研究テーマとなっているかを紹介したいと思います. 筆者のアンテナがカバーする範囲の制約から、主に理工 学系の内容になりますが、折り紙に関係する分野は幅広 いので、読者の皆さんの関心と重なる領域が、きっと見 つかることでしょう.

2. 折り紙に関するさまざまな研究分野

以降で紹介するように、折り紙に関する研究は数学・ 工学・生物学を含むさまざまな分野で行われています. 折り紙に関係する研究の多くは、これまでに開催された 折り紙の国際会議 (OSME) で発表されており、それら の研究論文は第3回以降、書籍の形でまとめられていま す. それ以前の古い論文は入手が困難なものも多いです が、現在も文献[1-3]は通常の書籍として購入可能 です、興味を持たれた方は、是非それらをご覧くださ い、以降では、折り紙に関する研究を筆者なりにいくつ かのテーマに分けて、その概要を紹介します.

折り紙の設計技法

紙を折っていたら、なにかの動物のような形になっ た. というようなアプローチで、折り紙作品が生まれる ことがあります、このような「見立て」による創作も盛 んにおこなわれますが、あらかじめ想定した形を1枚の 紙を折るだけで作り上げるにはどのようしたらよいか、 という問題を考えるのが折り紙設計です。前川淳による 作品「悪魔」(1989) [4] が折り紙設計の時代を拓いたと 評されています. 折り紙の設計技法は、これまでの連載 で主に取り上げてきたものであり、筆者が最も興味を 持っているテーマの1つでもあります。折り紙設計につ いて考えるには、そもそも1枚の紙から作り出される形 は、どのような条件を満たしていなければならないか、 ということを考える必要があり、折り紙の幾何に関する 知識が求められます.

これまでには、平坦に折りたたむことで作られる形に 関する研究が広く行われてきました. 第3回で紹介した ような、目的の形を木構造で表現し、各枝の長さを半径 とする円領域を敷き詰めることで展開図を設計するアプ ローチが、目黒俊幸とRobert J. Langによって考案、研 究され、またボックスプリーツという矩形の折り領域 の組み合わせ用いた設計技法などが、体系化されてい ます [5]. 立体的な折り紙についても、簡単なものであ れば本講座の第4回で示したように、鏡映変換を基本と することで、対話的な形状設計が可能になっています.

剛体折り紙

「多角形の剛板がヒンジで連結されたモデル」に置き 換えても, 折りたたむことが可能な折り紙を剛体折り紙 と呼びます、折り紙作品の多くは、紙がしなやかに変形 することを利用した折りたたみ工程が含まれ、剛体折り 紙でないことがほとんどです.一方で、剛体折り紙とし て知られるミウラ折りの構造は自由度が1であるため, 1か所を固定し、もう1か所を把持して動かすことで、 全体の開閉を行えるという特徴があります. 剛体折り可 能な構造は、実際に工業製品や建築物を作る上で重要に なるため、剛体折り紙で意図した形を実現することは実 用上大切なテーマです. 剛体折り紙に関しては、意図し た形の設計、与えられた展開図が剛体折り可能であるか どうかの判定、折りによる変形のアニメーション生成な ど、関連する研究テーマは多くあります。特に文献 [6]では、この剛体折りについて詳しく説明されてい ます.

曲線折り・曲面折り紙

紙はしなやかに曲げることができるので、曲線・曲面 を含む形も表現できます。曲面から構成される折り紙作 品が、数学者のDavid Huffman氏によって数多く作られ ました[7].一方で、その設計技法については、可展面 に鏡映変換を施す以外の方法は、あまり考案されていま せん. 鏡映変換で作り出される折り線は平面曲線に限定 され、空間曲線での折りを含む形の設計は未だ難しい問 題です. その解決方法として, 平面四角形の集合で離散 化し、最適化によって曲線折りを近似表現するアプロー チも取られています[8]. 同心円状に配置した折り線を

山谷交互に折ると、素材が発生させる応力とのバランス で、複雑に曲がった立体ができあがりますが、この形状 が数学的にどのように表されるのかも明らかになってい ません [9]. このように、空間曲線での折りに関して は、まだ研究の余地が大いにあります、図1は、曲面を 含む折り紙として、筆者がデザインした最近の折り紙作 品です.

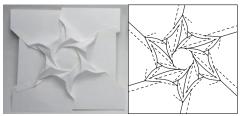


図1 平坦ねじり折りパターンを基にデザインした、曲線折 りを含む折り紙

計算折り紙(Computational Origami)

折り紙に関する諸問題を, コンピュータを使って解決 しようという試み全般を指してComputational Origami と 呼びます. 折り紙の設計技法が体系化された1990年代ご ろから普及してきた分野です. 特定の課題があるわけで はなく、近年では、折り紙の設計や、折りのシミュレー ション、対話的な折り紙デザインなど、コンピュータが 折り紙のさまざまな分野の研究に活用されるようになっ てきています. 対話的な操作で紙の折り操作をコン ピュータ上でシミュレートできるようにした研究として は、Miyazakiらの研究^[10]が、もっとも古いものと言え るでしょう.

コンピュータを積極的に用いることで, 折り紙設計や シミュレーションを効率化, 高精度化でき, 新規分野の 開拓に役立ちます、これまで手作業では設計できなかっ た形の創造に貢献するようになってきています。折り紙 の数理と、アルゴリズムやデータ構造、ユーザインタ フェースなどを組み合わせることで、折り紙に関する研 究がますます推進されると予想されます.

厚みのある素材での折り紙

折り紙の技術を工業製品に応用するためには、素材の 厚さを無視できません. 厚さのある素材は厳密には平坦 に折りたためないため、2次元平面の問題が3次元物体 の問題になります. 折り線の扱い. 折り線が交差する点 は、厚みによる干渉が発生するため、その扱いには工夫 が必要になります. 場合によっては素材の伸縮. 折り曲 げ箇所でのひずみや皺の発生などを考慮する必要があ り、厚みのある素材を折ることによる造形をしっかりモ

デル化するのは、厚さをゼロとみなす理想的な折り紙の 問題よりはるかに難しい問題です. 剛体折り紙の制作の ために、干渉する場所を取り除いたり、基準となる面に 対して裏と表の両方から傾斜を持つ部材を組み合わせて 対処する手法も考案されています[11]. 布や革など、厚 さのある柔軟素材を対象とした, 対話的な折りのシミュ レーションも研究されています [12].

ロボットによる折り紙

紙を折ることで作り出される製品が設計された場合, 効率的な製造のためにはロボットによる折り工程の自動 化が望まれます. 紙をロボットで折ることは難しい問題 で、まだまだ課題が多い分野です、これまでに、吸盤と 薄板を用いた折りロボット [13] や、複数のリンク機構を 持つロボットアームの開発事例 [14] があります。また、 マニピュレータの開発において、その「器用さ」を示す パフォーマンスとして、折り紙をすることも行われてい ますが、ロボットが自分で「鶴」を折れるようになるの は、まだ当分先のことだろうと思われます.

一方で、折り紙の仕組みを積極的にロボットの機構に 組み込んでいくことを目的とした研究も多く行われ、 Oribotics という言葉も生まれています [15].

生物との関係

昆虫が羽化するときには、小さく折りたたまれた羽根 が驚くほど大きく広がります. また, 植物のツボミが開 花する時も同様です、その仕組みを解明するために、折 り紙の知識が役立ちます。

また、これとは逆に、生物がどのように広い膜を小さ なスペースに格納しているかを学ぶことで、それを折り 紙の分野に活用することも考えられます。たとえば、ト ンボは羽化の時にどのように羽を開くかの研究が、大き な幕の巻取りや展開の技術へ応用されたりしました. こ のようなバイオミミクリーの発想を折り紙分野に適用す ることも研究されています [16].

折り紙と数学

紙を折る操作は、幾何学に密接な関係があり、古くか ら数学の分野で折り紙の研究が行われてきました。本連 載の第2回で紹介した。山谷の折り線が平坦に折りたた めるための条件(前川定理・川崎定理)など,数学的な 知見が折り紙の設計に、ふんだんに活用されています. 設計以外にも、折り操作で3次方程式を解く、角の三等 分をする、正多角形を折り出す(10角形まではすべて折 れる) など、折り紙を使って数学的な問題を解くという ことも行われています. また, 例えば「折り線が与えら れたときに、それを平坦に折りたたむことはできるか否

か判定せよ」という問題や「妥当な紙の重なり順を列挙 せよ」というような問題が与えられたときに、その解を 得るのにどの程度の計算量が必要か、など折り紙に関す る諸問題の計算量を求める研究も盛んにおこなわれてい ます. これらの問題を幅広く紹介したものとして文献 [17] があります.

折り紙と教育

折り紙を通して、角の二等分や、三角形の性質を学ぶ など、簡単な初等数学の教育に活用することが試みられ ています. 例えば、鶴の展開図から、直角三角形、角の 二等分線と三角形の内心などの幾何の学習を行うことが できます. 実際に手を動かして形を作ることが, 子供た ちの興味と集中力を引き出すことにつながるのでしょ う. 折り紙に適した学習テーマを見つけることができれ ば、教育にも有効に貢献できるものと思われます.「折 り紙」と「数学」をキーワードに検索すれば、たくさん の書籍が見つかります.

折り紙の産業応用

素材を紙に限定しなければ、「折り」の技術は産業に 大きく寄与しています. 人工衛星の太陽電池パネルの折 りたたみや、飲料缶の表面への凹凸の付加などが、よく 取り上げられますが、身近なところでは、菓子箱や紙 袋、夏場に活躍する扇子やパラソルなども折りの技術の 応用とみることができます。最近では、折りたたみ可能 なカヤックが登場しました. 一方で、最新の折り技術を 応用した、新しい工業製品が次々に登場するかという と、なかなかそうでもありません、その理由の1つに、 「折って作る」ということが大量生産を難しくしている ことがあります. 複雑な折りが必要な形の容器は、射出 成型で作ってしまう方が効率的です. また、1枚の素材 を折ることによる利点として、気密性を維持できること がありますが、それを気にしないのであれば、無理に1 枚の素材を折ることにこだわる必要はありません。産業 利用を考えた場合は、ニーズとコストのバランスが重要 であり、製造工程まで考慮した製品設計が必要となる点 が、まだまだ難しい問題として残っています.

小さくたたむ以外にも,素材の強度を調整する目的で 「折り」が使用されることもあります. 飲料缶の表面の 凹凸は強度を増すためのものであり、車体のサイドメン バに折り構造を加えることで、効率的に衝突エネルギー を吸収できるようにする研究や、板材の軽量化など、材 料面での応用も検討されています.

その他

これまでの分類にうまくあてはまらない研究もたくさ

んあります、展開図から、折った後の形や、折り手順、 折り方を説明するためのアニメーションの生成などを行 う研究, ユニット折りやテセレーションと呼ばれる, 折 り紙の特定分野についての設計技法に関する研究もあり ます. ステントの折りたたみなど. 医療への応用. 折り 方の認知に関する研究、などなど、この他にもまだまだ ありそうです. そもそも「折り紙」の定義が多種多様で あるため,「平坦なものを折る」という操作が含まれる ものは、なんでも折り紙の研究と行ってしまって構わな いようにも見えます. 折り紙の研究は、異分野の研究が 混じり合う、稀有な研究対象と言えるでしょう.

4. 折り紙についてさらに学ぶために

最後に、折り紙についてさらに学ぶためのヒントを紹 介します.

折り紙作品を鑑賞する

折り紙について学ぶ第一歩は折り紙作品を実際に自分 の目で見ることでしょう. そして, 実際に折ってみるこ とです. 最近の折り紙技術の進歩は目覚ましいものが あり、驚くほど精巧で、かつ芸術的な作品が世界中で作 られています。東京都文京区には「折紙会館」と「おり がみはうす」があり、折り紙作品が多数展示されていま す. 都内に赴くことが難しい場合はインターネット上で もさまざまな作品の写真を見ることができます.最近で は,写真共有サイトであるFlickr (http://www.flickr.com/) 上で折り紙作品を公開している方が多く、少し覗いてみ ると膨大な数の折り紙の写真が見つかります。海外から の投稿が多く、「origami」をキーワードに検索すると、 いくら時間があっても見きれないほどの件数がヒットし ます. ある程度ターゲットを絞るためには, origamiに 関するグループを検索するといいでしょう。たとえば、 Origami Tessellations, Computer Aided Origami, Curved Fold, Origami Boxes, のように、特定の分野に特化した 折り紙に関するグループを見つけることができます.

最新の情報を収集する

新しい情報を得るには研究会に参加するのが一番で しょう. 本学会でも折り紙に関する研究がこれまでに発 表されてきましたが、折り紙に特化した研究会として は、年に2回、日本折紙学会が主催する折り紙の科学・ 数学・教育研究集会があります。折り紙だけを研究をし ている人はあまりいませんので、参加する方々のバック グランドは様々です. 大学に籍をおいている人よりも. そうでない人の方が多いのも特徴で、老若男女、多様な 分野の方々集まります。毎回10件前後の発表があり、参 加者は30名程度といった小規模なものですが、最近の折 り紙の話題を共有できる楽しい研究会です. Webページ は http://origami.gr.jp/OSME/ です.

日本応用数理学会の中に折紙工学研究部会があり、主 に折りの技術を工学的に活用する研究が発表されます. もう少し気軽な折り紙イベントとして、折り紙のコンベ ンションや講習会に参加するのも選択肢の1つです. 日 本を代表する折り紙作家や研究者、気鋭の若手愛好家た ちに会うことができます.

折り紙の国際会議

折り紙は日本だけでなく世界中で多くの研究者に関心 を持たれています. 図学国際会議 (ICGG) や, 国際図 学会 (ISGG) が発行する論文誌 Journal for Geometry and Graphics でも、折り紙の研究が多数発表されていま 7. International Meeting of Origami Science, Mathematics and Education (OSME) という、折り紙に特化した国際 会議があり、これは1989年にイタリアで開催されて以 来, 4-6年毎に開催されています. これまでに5回, イタリア (1989), 日本 (1994), アメリカ (2001), ア メリカ (2006), シンガポール (2010) の順番で開催さ れてきました. 第6回目にあたる次回は、2014年8月10 日~13日に東京大学で開催されることが決まっていま す. 20年ぶりの日本での開催です. Webページは http:// origami.gr.jp/6 osme/です.

4. おわりに

図学と折り紙に関する連載講座も、第6回となる今回 で、最終回となりました。これまでの連載を通して、 「なるほど、折り紙もなかなか奥が深そうだ」と感じて いただけたなら幸いです。紙を折るだけのことでありな がら, 折り紙の世界は奥深く, 研究としても面白い対象 です. ORIGAMIという言葉は、世界中で使われる言葉 となりましたが、海外でも活発に研究が行われ、今や日 本が最先端だとは言い難い状況にあります. 本連載に よって、折り紙に関する研究に興味を持たれた方がい らっしゃれば、望外の喜びです.

最後になりましたが、1年半にわたり、ご支援をいた だきました日本図学会編集委員の皆様に感謝申し上げま す.

参考文献

- [1] Thomas Hull, 川崎 敏和(訳), "折り紙の数理と科学", 森北出版, 2005
- [2] Robert J. Lang (編), "Origami 4", A K Peters/CRC Press, 2009

- [3] Patsy Wang-Iverson (編), Robert J. Lang (編), Mark YIM (編), "Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education", A K Peters/CRC Press, 2011
- [4] 前川 淳, 笠原 邦彦, "ビバ!おりがみ", サンリオ (1989)
- [5] Robert J. Lang, "Origami Design Secrets: Mathematical Methods for an Ancient Art", Second Edition, A K Peters/ CRC Press. 2011.
- [6] 野島 武敏(編), 萩原 一郎(編), "折紙の数理とそ の応用", 共立出版, 第5章, 2012.
- [7] Cones, curves, shells, towers: He made paper jump to life. The New York Times, June 22 (2004)
- [8] Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, Helmut Pottmann, Curved folding, ACM Transactions on Graphics, 27 (3), Artcile No.75 (2008)
- [9] Koschitz, D., Demaine, E., Demaine, M.: Curved crease origami, In Abstracts from Advances in Architectural Geometry, pp.29–32 (2008)
- [10] Miyazaki, S.Y., Yasuda, T., Yokoi, S. and Toriwaki, J. I. "An origami playing simulator in the virtual space", Journal of Visualization and Computer Animation, 7 (1): 25-42,
- [11] Tomohiro Tachi, "Rigid-Foldable Thick Origami", in Proc. of 5 OSME, 2010.
- [12] Lifeng Zhu, Takeo Igarashi, and Jun Mitani, "Soft Folding", The 21st Pacific Conference on Computer Graphics and Applications, 32 (7), 2013
- [13] Devin J. Balkcom, Matthew T. Mason; Robotic origami folding. International Journal of Robotics Research 27 (5):613-627 (2008)
- [14] 大島裕貴,木原康之,横小路泰義,"直接教示の容易性と高 難易度の折り紙作品の実現を考慮したロボットハンド の設計",第12回システムインテグレーション部門講演 会,2011
- [15] Matthew Gardiner, "Oribotics by Matthew Gardiner", http://www.oribotics.net/
- [16] 野島 武敏(編), 萩原一郎(編), "折紙の数理とそ の応用", 共立出版, 第6章, 2012.
- [17] Erik D. Demaine, Joseph O'Rourke, 上原 隆平(訳),幾 何的な折りアルゴリズム―リンケージ, 折り紙, 多面 体. 近代科学社. 2009.

●2013年10月15日受付

みたに じゅん

筑波大学大学院システム情報系 准教授 2004年,東京大学大学院工学系研究科精密機械工学専攻博士課程 修了.博 士 (工学) .2011年より現職.CG,形状モデリングに関する研究に従事. mitani@cs.tsukuba.ac.jp